Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtre
Ajouter des filtres

Sujet Principal
Type de document
Gamme d'année
1.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.10.10.511571

Résumé

Our work seeks to transform how new and emergent variants of pandemic causing viruses, specially SARS-CoV-2, are identified and classified. By adapting large language models (LLMs) for genomic data, we build genome-scale language models (GenSLMs) which can learn the evolutionary landscape of SARS-CoV-2 genomes. By pre-training on over 110 million prokaryotic gene sequences, and then finetuning a SARS-CoV-2 specific model on 1.5 million genomes, we show that GenSLM can accurately and rapidly identify variants of concern. Thus, to our knowledge, GenSLM represents one of the first whole genome scale foundation models which can generalize to other prediction tasks. We demonstrate the scaling of GenSLMs on both GPU-based supercomputers and AI-hardware accelerators, achieving over 1.54 zettaflops in training runs. We present initial scientific insights gleaned from examining GenSLMs in tracking the evolutionary dynamics of SARS-CoV-2, noting that its full potential on large biological data is yet to be realized.

2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.08.08.22278553

Résumé

Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has demonstrated its ability to rapidly and continuously evolve, leading to the emergence of thousands of different sequence variants, many with distinctive phenotypic properties. Fortunately, the broad availability of next generation sequencing (NGS) technologies across the globe has produced a wealth of SARS-CoV-2 genome sequences, offering a comprehensive picture of how this virus is evolving so that accurate diagnostics and reliable therapeutics for COVID-19 can be maintained. The millions of SARS-CoV-2 sequences deposited into genomic sequencing databases, including GenBank, BV-BRC, and GISAID are annotated with the dates and geographical regions of sample collection, and can be aligned to the Wuhan-Hu-1 reference genome to extract the constellation of nucleotide and amino acid substitutions. By aggregating these data into concise datasets, the spread of variants through space and time can be assessed. Variant tracking efforts have focused on the spike protein due to its critical role in viral tropism and antibody neutralization. To identify emerging variants of concern as early as possible, we developed a computational pipeline to process the genomic data from public databases and assign risk scores based on both epidemiological and functional parameters. Epidemiological dynamics are used to identify variants exhibiting substantial growth over time and across geographical regions. In addition, experimental data that quantify Spike protein regions critical for adaptive immunity are used to predict variants with consequential immunogenic or pathogenic impacts. These growth assessment and functional impact scores are combined to produce a Composite Score for any set of Spike substitutions detected. With this systematic approach to routinely score and rank emerging variants, we have established a method to identify threatening variants early and prioritize them for experimental evaluation.


Sujets)
COVID-19
3.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.09.27.461949

Résumé

The ARTIC Network provides a common resource of PCR primer sequences and recommendations for amplifying SARS-CoV-2 genomes. The initial tiling strategy was developed with the reference genome Wuhan-01, and subsequent iterations have addressed areas of low amplification and sequence drop out. Recently, a new version (V4) was released, based on new variant genome sequences, in response to the realization that some V3 primers were located in regions with key mutations. Herein, we compare the performance of the ARTIC V3 and V4 primer sets with a matched set of 663 SARS-CoV-2 clinical samples sequenced with an Illumina NovaSeq 6000 instrument. We observe general improvements in sequencing depth and quality, and improved resolution of the SNP causing the D950N variation in the spike protein. Importantly, we also find nearly universal presence of spike protein substitution G142D in Delta-lineage samples. Due to the prior release and widespread use of the ARTIC V3 primers during the initial surge of the Delta variant, it is likely that the G142D amino acid substitution is substantially underrepresented among early Delta variant genomes deposited in public repositories. In addition to the improved performance of the ARTIC V4 primer set, this study also illustrates the importance of the primer scheme in downstream analyses. ImportanceARTIC Network primers are commonly used by laboratories worldwide to amplify and sequence SARS-CoV-2 present in clinical samples. As new variants have evolved and spread, it was found that the V3 primer set poorly amplified several key mutations. In this report, we compare the results of sequencing a matched set of samples with the V3 and V4 primer sets. We find that adoption of the ARTIC V4 primer set is critical for accurate sequencing of the SARS-CoV-2 spike region. The absence of metadata describing the primer scheme used will negatively impact the downstream use of publicly available SARS-Cov-2 sequencing reads and assembled genomes.

4.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.09.22.20199125

Résumé

We sequenced the genomes of 5,085 SARS-CoV-2 strains causing two COVID-19 disease waves in metropolitan Houston, Texas, an ethnically diverse region with seven million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston, and an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotypes and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein - the primary target of global vaccine efforts - are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR30022. Our study is the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves, and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution. IMPORTANCEThere is concern about second and subsequent waves of COVID-19 caused by the SARS-CoV-2 coronavirus occurring in communities globally that had an initial disease wave. Metropolitan Houston, Texas, with a population of 7 million, is experiencing a massive second disease wave that began in late May 2020. To understand SARS-CoV-2 molecular population genomic architecture, evolution, and relationship between virus genotypes and patient features, we sequenced the genomes of 5,085 SARS-CoV-2 strains from these two waves. Our study provides the first molecular characterization of SARS-CoV-2 strains causing two distinct COVID-19 disease waves.


Sujets)
COVID-19
5.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.05.01.072652

Résumé

We sequenced the genomes of 320 SARS-CoV-2 strains from COVID-19 patients in metropolitan Houston, Texas, an ethnically diverse region with seven million residents. These genomes were from the viruses causing infections in the earliest recognized phase of the pandemic affecting Houston. Substantial viral genomic diversity was identified, which we interpret to mean that the virus was introduced into Houston many times independently by individuals who had traveled from different parts of the country and the world. The majority of viruses are apparent progeny of strains derived from Europe and Asia. We found no significant evidence of more virulent viral types, stressing the linkage between severe disease, underlying medical conditions, and perhaps host genetics. We discovered a signal of selection acting on the spike protein, the primary target of massive vaccine efforts worldwide. The data provide a critical resource for assessing virus evolution, the origin of new outbreaks, and the effect of host immune response. SignificanceCOVID-19, the disease caused by the SARS-CoV-2 virus, is a global pandemic. To better understand the first phase of virus spread in metropolitan Houston, Texas, we sequenced the genomes of 320 SARS-CoV-2 strains recovered from COVID-19 patients early in the Houston viral arc. We identified no evidence that a particular strain or its progeny causes more severe disease, underscoring the connection between severe disease, underlying health conditions, and host genetics. Some amino acid replacements in the spike protein suggest positive immune selection is at work in shaping variation in this protein. Our analysis traces the early molecular architecture of SARS-CoV-2 in Houston, and will help us to understand the origin and trajectory of future infection spikes.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche